5357cc拉斯维加斯
教师主页

教师主页

Akeel Shah

职称:教授

联系方式:akeelshah@cqu.edu.cn

主要从事:​ Fuel cells and energy storage, especially hydrogen fuel cells and redox flow batteries, with an emphasis on the development of new systems and computational modellin
  • 个人简介
  • 教育经历
  • 研究方向
  • 本科生及研究生培养
  • 科研项目
  • 代表性论文

Professor Akeel Shah graduated with a PhD in Applied Mathematics from University of Manchester Institute of Science and Technology in 2001. He is currently a Professor in the School of Energy and Power Engineering at the University of Chongqing, with expertise in electrochemical energy conversion, computational engineering and applied machine learning. He previously held positions at University of Southampton and University of Warwick. His work is primarily focused on the modelling and simulation of energy-conversion devices (flow batteries, metal-air batteries, organic/inorganic fuel cells), including computational modelling, and the development of fast algorithms for computer codes in science and engineering based on machine learning and computational statistics. Between 2004 and 2006, he held a joint Pacific Institute of Mathematics Sciences (PIMS) and Mathematics of Information Technology and Complex Systems (MITACS) Fellowship. He is the author of over 70 publications in leading, international peer-reviewed journals.

10.1997 – 01.2001 PhD Applied Mathematics, University of Manchester/UMIST

10.1992 – 06.1995 BSc (honours) Mathematical Physics, University of Manchester/UMIST

 


1.      Fuel cells and energy storage, especially hydrogen fuel cells and redox flow batteries, with an emphasis on the development of new systems and computational modelling

2.      Computational models for science and engineering with applications to energy technologies

3.      Machine learning and emulation, with an emphasis on high-dimensional problems related to input and output spaces

 

Masters and PhD candidates interested in any of these or related topics are encouraged to contact me for discussions.


      研究生培养: 

      1.   Machine Learning for Engineers, Graduate course

      2.   Numerical Methods for Engineers, Undergraduate course

      3.   Introduction to Machine Learning, Summer School

 


在研科研项目:

Chongqing University's "hundred-person plan" scientific research start-up fee, 2 million RMB

 

已结题科研项目:

(1) Sponsor: EPSRC (awarded 08/2016; Warwick share of a consortium bid led by University of Exeter)

Title: Zinc-Nickel Redox Flow Battery for Energy Storage (SUPERGEN Energy Storage Grand Challenge) EP/P003494/1

Funds: £298,000 UOW share of £1.049m total,

Period: 2016–2020

Partners: Dr Xiaohong Li (PI, Exeter), Prof. Nigel Brandon (Imperial), Prof Tapas Mallick (Exeter)

 

(2) Sponsor: EPSRC (awarded 09/2016)

Title: Surrogate Assisted Approaches For Fuel Cell And Battery Models (Overseas Travel Grant) EP/P012620/1

Funds: £82,500

Period: 2016–2017

 

(3) Sponsor: EPSRC

Title: Real-Time H2 Purification and Monitoring for Efficient and Durable Fuel Cell Vehicles (SUPERGEN Hydrogen Fuel Cells Challenge) EP/L018330/1

Funds: £568,000 share of £1.257m total,

Period: 2014–2018

Partners: University College London (Prof Xiao Guo, UCL (PI))

 

(4) Sponsor: European Union FP7

Title: ‘NECOBAUT’: New Concept of Metal-Air Battery for Automotive Application based on Advanced Nanomaterials (Grant No. 314159)

Funds: EUR 199,000 share of EUR 2.12m total

Period: 2012–2016

Partners: Fundacion Tecnalia Research & Innovation, University of Southampton, Con- siglio Nazionale delle Ricerche, Institut National de l’environnement Industriel et des Risques, Tecnicas Reunidas SA, Timcal SA, Saft Baterias SL

 

(5) Sponsor: Technology Strategy Board/Department of Energy and Climate Change

Title: Improvements to Soluble Lead Redox Flow Battery Components

Funds: £204,000 share of £500,500k total

Period: 2013–2015

Partners: C-Tech Innovation Ltd, E.On UK, University of Southampton.

 

(6) Sponsor: Technology Strategy Board (TSB)

Title: Build and test the world’s first 10kW membrane-based fuel cell backup power system incorporating a novel platinum-free liquid regenerating cathode (‘ApPLES’). TSB Grant TP/BH039G 100773.

Funds: £128,000 share £974,000 total,

Period: 200...

1.      W. Sun, Y. Zheng, K. Yang, Q. Zhang, A.A. Shah, Z. Wu, Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li, K. Sun* (2019), Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials

Science advances 5 (11), eaay4275

2.      C. Gadd, W.W. Xing, M. Mousavi Nezhad, A.A. Shah* (2019), A surrogate modelling approach based on nonlinear dimension reduction for uncertainty quantification in ground- water flow models, Transport in Porous Media, 126(1), 39-77

3.      J. Xu, Q. Ma, H. Su, F. Qiao, P. Leung, A. Shah, Q. Xu* (2019), Redox characteristics of iron ions in different deep eutectic solvents, Ionics, 1-10

4.      D. Crevillén-García, P.K. Leung, A. Rodchanarowan, A.A. Shah* (2019), Uncertainty quantification for flow and transport in highly heterogeneous porous media based on simultaneous stochastic model dimensionality reduction, Transport in porous media 126 (1), 79-95

5.      D.Trudgeon, K. Qiu, O. Taiwo, B. Chakrabarti, V. Yufit, D. Crevillen-Garcia, A.A. Shah, T. Mallick, N. Brandon, X. Li* (2019), Screening of effective electrolyte additives for zinc- based redox flow battery systems, Journal of Power Sources 412, 44-54

6.      Q. Xu*, L.Y. Qin, Y.N. Ji, P.K. Leung, H.N. Su, F. Qiao, W.W. Yang, A.A. Shah, H.M. Li, (2019) A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability, Electrochimica Acta 293, 426-431

7.      C. Gadd*, S. Wade, A.A. Shah, D. Grammatopoulos (2018), Pseudo-marginal Bayesian inference for supervised Gaussian process latent variable models, http://arxiv.org/abs/ 1803.10746

8.      Q Xu*, Y. Ji, L. Qin, P.K. Leung, A.A. Shah, H. Su, H. Li (2018), Influence of carbon dioxide additive on the characteristics of a deep eutectic solvent (DES) electrolyte for non- aqueous redox flow batteries, Chemical Physics Letters, 708, 48-53, https://doi.org/ 10.1016/j.cplett.2018.07.060

9.      D. Crevillen-Garcia, P.K. Leung and A.A. Shah* (2018), An emulator for kinetic Monte Carlo simulations of kinetically controlled metal electrodeposition, IOP Journal of Physics: Conference Series, 1053 012081

10.  P. Termsaithong, R. Munprom, A.A. Shah, A. Rodchanarowan* (2018), Pulsed current co electrodeposition of kesterite Cu2ZnSnS4 absorber material on fluorinated tin oxide (FTO) glass under galvanostatic conditions, Surface and Coatings Technology, 350, 807- 812, https://doi.org/10.1016/j.surfcoat.2018.04.045

11.  P. Leung, A. Khor, M.R. Mohamed, C. Flox, Q. Xu, L. An, R. Wills, J. Morante (2018), A.A. Shah* (2018), Zinc-Based Hybrid Flow Batteries: From Fundamentals to Applica- tions, Materials Today Energy, 8, 80-108

12.  M. Krishna, R.G. Wills*, A.A. Shah, D. Hall, J. Collins (2018), The Separator-Divided Soluble Lead Flow Battery, Journal of Applied Electrochemistry, 48, 1031-1041, https: //doi.org/10.1007/s10800-018-1230-2

13.  V. Triantafyllidis, W.W. Xing, P.K. Leung and A.A. Shah* (2018), Probabilistic sensi- tivity analysis for multivariate model outputs with applications to Li-ion batteries, IOP Journal of Physics: Conference Series, 1039 012020

14.  P. Leung, D. Alli, Q. Xu, A.A. Shah* (2018), Rechargeable organic-air redox flow bat- teries based on low-cost materials, Sustainable Energy & Fuels, 2, 2252-2259

15.  D. Crevillen-Garcia, P.K. Leung, A. Rodchanarowan and A.A. Shah* (2018), Uncer- tainty quantification for flow and transport in highly heterogeneous porous media based on simultaneous stochastic model dimensionality reduction, Transport in Porous Media, in press, https://doi.org/10.1007/s11242-018-1114-2

16.  W.W. Xing, A.A. Shah*, B. Urasinska-Wojcik, J.W. Gardner (2017), A new CuO based MOX sensor for detecting H2S: development and performance analysis, SENSORS, 2017 IEEE, 1-3.

1.      Akeel A. Shah Page 11

17.  A.A. Shah*, W. Xing, V. Triantafyllidis (2017), Reduced order modelling of parameter dependent linear and nonlinear dynamic PDE models, Proceedings of Royal Society A, 473 (2200), 20160809

18.  D. Crevillen-Garcia*, R. D. Wilkinson, A.A. Shah, H. Power (2017), Gaussian process emulation for uncertainty quantification in convectively enhanced dissolution processes in porous media, Advances in Water Resources, 99, 1-14

19.  A.A. Shah* (2017), Surrogate modelling for spatially distributed fuel cell models with applications to uncertainty quantification, Journal of Electrochemical Energy Conversion and Storage, 14(1), 011006 (15 pages)

20.  P. Kamnerdkhag, M.L. Free, A.A. Shah, A. Rodchanarowan* (2017), The Effects of Duty Cycles on Pulsed Electrodeposition of Zn-Ni-Al2O3 Composite on Steel Substrate: Microstructures, Hardness and Corrosion Resistance, International Journal of Hydrogen Energy, 42, 20783-20790

21.  M. Krishna, L.P. Wallis, R.G.A. Wills*, D. Hall and A.A. Shah (2017), Understanding Key Electrolyte Properties for Improved Performance of the Soluble Lead Flow Battery, International Journal of Hydrogen Energy, 42, 18491-18498

22.  P.K. Leung, A.A. Shah*, L. Sanz, C. Flox, J.R. Morante, F.C. Walsh (2017), Recent developments in organic redox flow batteries: a critical review, Journal of Power Sources, 360, 243-283

23.  P. Leung, T. Martin, M. Liras, A.A. Shah*, A.M. Berenguer, R. Marcillia, M.A. Ander- son, J. Palma (2017), Electronegative cyclohexanedione as the promising electrode reaction for organic redox flow batteries, Applied Energy 197, 318-326

24.  P.K. Leung, T. Martin, A.A. Shah*, M.A. Anderson, J. Palma (2017), Membrane-less hybrid flow battery based on low-cost elements, Journal of Power Sources, 341, 36-45

25.  P.K. Leung, T. Martin, J. Palma, A.A. Shah*, M.R. Mohamed, R. Marcillia, M.A. Anderson (2016), Membrane-less organic-inorganic aqueous flow batteries with improved cell potential, Chemical Communications, 52(99), 14270-14273.

26.  W. Xing, V. Triantafyllidis, A.A. Shah*, P.B. Nair, N. Zabaras (2016), Manifold learning for the emulation of spatial fields from computational models, Journal of Computational Physics 326, 666-690

27.  V. Triantafyllidis, W. Xing, A.A. Shah* and P.B. Nair (2016), Neural Network Emu- lation of Spatio-Temporal Data Using Linear and Nonlinear Dimensionality Reduction, Advanced Computer and Communication Engineering Technology, Lecture Notes in Elec- trical Engineering, vol 362, Springer Verlag

28.  W. Xing, A.A. Shah*, P.B. Nair (2015), Isomap based Gaussian process emulators of parameterized partial differential equations, Proceedings of the Royal Society A, 471, 2176, 20140697

29.  A.A. Khan*, D.D. Iliescu, A.A. Shah, R.J. Sneath and C.E. Hutchinson (2015), Prin- cipal Component and Factor Analysis to Study Age Related Changes in Lumbar Spine, Biomedical and Health Informatics, IEEE Journal of, 19(2), 745-751

30.  R.D. McKerracher, C. Ponce de Leon*, R.G.A. Wills, A.A. Shah, F.C. Walsh (2015), A review of the iron-air secondary battery for energy storage, ChemPlusChem, 80(2), 323-335

31.  P.K. Leung, M.R. Mohammad, A.A. Shah*, M.B. Conde (2015), A High power vanadium- cerium redox flow battery with a zero-gap serpentine architecture, Journal of Power Sources, 274, 651-658

32.  A.A. Shah* (2015), A survey of data-driven emulators for high dimensional spatia- temporal data, in: Proceedings of International Conference on Information Technology and Computer Science, ISBN 9788193137307.

33.  M. Kourasi, R.G.A. Wills*, A.A. Shah, F.C. Walsh (2014), Heteropolyacids for fuel cell applications, Electrochimica Acta, 127, 454-466

34.  O. Naseer*, A.A. Shah (2013), Integrating Fault Tolerant Scheme with Feedback Control Scheduling Algorithm at Software Level for Real Time Embedded Systems, International journal of Instrumentation and Control Systems (IJICS), 3(4), 1-15.

35.  M.H. Osman, A.A. Shah*, R.G.A. Wills, F.C. Walsh (2013), Mathematical Modelling of an Enzymatic Fuel Cell with an Air-Breathing Cathode, Electrochimica Acta, 112, 386-393

36.  O. Naseer*, A.A. Khan, A.A. Shah (2013), Feedback Control Scheduling for Crane Con- trol System, IEEE Proceedings on Engineering of Computer Based Systems

37.  M.H. Osman, A.A. Shah*, R.G.A. Wills (2013), A Detailed Mathematical Model of an Enzymatic Fuel Cell, Journal of the Electrochemical Society, volume 160, issue 8, F806- F814

38.  B. Zamora, A.A. Al-Hajjaj, A.A. Shah*, D.V. Bavykin, E. Reguera (2013), Kinetic and thermodynamic studies of hydrogen adsorption on titanate nanotubes decorated with a Prussian blue analogue. International Journal of Hydrogen Energy, Volume 38, Issue 15, 6406–6416

39.  A.A. Shah*, R. Singh, C. Ponce de Leon, R.G.A. Wills, and F.C. Walsh (2013) Math- ematical Modelling of Direct Borohydride Fuel Cells, Journal of Power Sources, 221(1), 157-171

40.  M.J. Watt-Smith, P. Ridley, R.G.A. Wills*, A.A. Shah, and F.C. Walsh (2013) The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery, Journal of Chemical Technology & Biotechnology, 88(1), 126-138

41.  R. Singh, A.A. Shah*, A. Potter, B. Clarkson, A. Creeth, C. Downs, F.C. Walsh (2012), Performance and Analysis of a Novel Polymer Electrolyte Membrane Fuel Cell Using a Solution Based Redox Mediator. Journal of Power Sources, 201(1), 159-163

42.  A.A. Al-Hajjaj, B. Zamora, D.V. Bavykin*, A.A. Shah, F.C. Walsh, E. Reguera (2012), Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe(CN)6]2 Prussian Blue analogue. International Journal of Hydrogen Energy, 37(1), 318-326

43.  G. Kear, A.A. Shah*, and F.C. Walsh (2012) Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research, 36(11), 1105–1120

44.  Merino-Jimenez, C. Ponce de Leon*, A.A. Shah, and F.C. Walsh (2012) Developments in Direct Borohydride Fuel Cells and Remaining Challenges, Journal of Power Sources, 219(1), 339-357

45.  M. Kourasi, R.G.A. Wills*, A.A. Shah, and F.C. Walsh (2012) Electrochemical investiga- tion of molybdophosphoric acid in bifunctional oxygen evolution and reduction electrodes for applications in alkali media, Electrochemistry Communications, 22, 174–176

46.  A.A. Al-Hajjaj, B. Zamora, A.A. Shah*, D.V. Bavykin, E. Reguera, F.C. Walsh (2011), On the application of standard isotherms to hydrogen storage in microporous materials. International Journal of Hydrogen Energy, 26(11), 14464-14476

47.  P.K. Leung, C. Ponce de Leon*, C.T.J. Low, A.A. Shah, and F.C. Walsh (2011) Char- acterization of a zinc-cerium flow battery. Journal of Power Sources, 196(11), 5174-5185

48.  A.A. Shah*, K.H. Luo, T.R. Ralph, and F.C. Walsh (2011) Recent trends and develop- ments in polymer electrolyte membrane fuel cell modelling. Electrochimica Acta, 56(11), 3731-3757

49.  A.A. Shah*, R. Tangirala, R. Singh, R.G.A. Wills, and F.C. Walsh (2011) A dynamic unit cell model of the all-vanadium redox flow battery. Journal of The Electrochemical Society, 158(6), A671-A677

50.  M.H. Osman, A.A. Shah*, and F.C. Walsh (2011) Recent progress and continuing chal- lenges in bio-fuel cells. Part I: enzymatic cells. Biosensors and Bioelectronics, 26(7), 3087-3102

51.  M.H. Osman, A.A. Shah*, and F.C. Walsh (2010) Recent progress and continuing chal- lenges in bio-fuel cells. Part II: Microbial. Biosensors and Bioelectronics, 26(3), 953-963

52.  A.A. Shah*, X. Li, R.G.A. Wills, and F.C. Walsh (2010) A mathematical model for the soluble lead-acid flow battery. Journal of The Electrochemical Society, 157(5), A589-A599

53.  H.A. Al-Fetlawi, A.A. Shah*, and F.C. Walsh (2010) Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochimica Acta, 55(9), 3192-3205

54.  X. Zhang*, D. Song, Q. Wang, C. Huang, Z.S. Liu, and A.A. Shah (2010) Numerical anal- ysis of water transport through the membrane electrolyte assembly of a polymer exchange membrane fuel cell. Journal of Fuel Cell Science and Technology, 7(2), 021009-021022

55.  A.A. Shah*, H.A. Al-Fetlawi, and F.C. Walsh (2010) Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochimica Acta, 55(3), 1125- 1139

56.  H.A. Al-Fetlawi, A.A. Shah*, and F.C. Walsh (2009) Non-isothermal modelling of the all-vanadium redox flow battery. Electrochimica Acta, 55(1), 78-89

57.  A.A. Shah*, T.R. Ralph, and F.C. Walsh (2009) Modelling and simulation of the degra- dation of perfluorinated ion-exchange membranes in PEM fuel cells. Journal of The Elec- trochemical Society, 156(4), B465-B484

58.  A.A. Shah*, M.J. Watt-Smith, and F.C. Walsh (2008) A dynamic performance model for redox-flow batteries involving soluble species. Electrochimica Acta, 53(27), 8087-8100

59.  A.A. Shah*, and F.C. Walsh (2008) A model for hydrogen sulfide poisoning in proton exchange membrane fuel cells. Journal of Power Sources, 185(1), 287-301

60.  A.A. Shah*, J. Brindley, A. McIntosh, and J. Rademacher (2008) The effects of heat exchange and fluid production on the ignition of a porous solid. Nonlinear Analysis: Real World Applications, 9(2), 562-584

61.  A.A. Shah*, G.-S. Kim, and K. Promislow (2007) Mathematical modelling of the catalyst layer of a polymer-electrolyte fuel cell. IMA Journal of Applied Mathematics, 72(3), 302- 330

62.  A.A. Shah*, J. Brindley, A. McIntosh, and J. Griffiths (2007) Ignition and combustion of low-exothermicity porous materials by a local hotspot. Proceedings of the Royal Society Series A, 463(2081), 1287-1305

63.  A.A. Shah*, G.-S. Kim, P.C. Sui, and D. Harvey (2007) Transient non-isothermal model of a polymer electrolyte fuel cell. Journal of Power Sources, 163(2), 793-806

64.  A.A. Shah*, P.C. Sui, G.-S. Kim, and S. Ye (2007) A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst. Journal of Power Sources, 166(1), 1-21

65.  A.A. Shah*, J. Brindley, A. McIntosh, and J. Griffiths (2006) Gas-phase and heat- exchange effects on the ignition of high- and low-exothermicity porous solids subject to constant heating. Journal of Engineering Mathematics, 56(2), 161-177

66.  A.A. Shah*, G.-S.Kim, W. Gervais, A. Young, K. Promislow, J. Li, and S. Yi (2006) The effects of water and microstructure on the performance of polymer electrolyte fuel cells. Journal of Power Sources, 160(2), 1251-1268

67.  G.-S Kim*, P.C. Sui, A.A. Shah (2006), A comparison of reduced and full dimensional simulation models for proton exchange membrane fuel cells AIChE Annual Meeting, Con- ference Proceedings, 12 p.

68.  A.A. Shah*, J. Brindley, A. McIntosh, J. Griffiths, J. and M. Pourkashanian (2004) The Ignition of low-exothermicity solids by local heating. Process Safety and Environmental Protection; Official Journal of the European Federation of Chemical Engineering: Part B, 82 (B2 Special Issue), 156-169

69.  A.A. Shah*, and G.C. Wake (2004) The existence of steady states to a combustion model with internal heating. Nonlinear Analysis: Real World Applications, 5(3), 421-439

70.  J.W. Dold*, R.W. Thatcher, and A.A. Shah (2003) High order effects in one step reaction sheet jump conditions for premixed flames. Combustion Theory Modelling, 7(1), 109-127

71.  J.W. Dold*, R.O. Weber, R. Thatcher, and A.A. Shah (2003) Flame balls with thermally sensitive intermediate kinetics. Combustion Theory and Modelling, 7(1), 175-203

72.  A.A. Shah*, A. McIntosh, J. Brindley, J. Griffiths, and M. Pourkashanian (2003) The effect of oxygen starvation on ignition phenomena in a reactive solid containing a hot-spot. Combustion Theory and Modelling, 7(3), 509-523

73.  A.A. Shah, J.W. Dold*, J.W. and R.W. Thatcher (2000) Stability of a spherical flame ball in a porous medium. Combustion Theory and Modelling, 4(4), 511-534

 

学术会议交流:

1.      Invited Speaker, International Conference on Energy and AI, Tianjin, China, Jan 9-11, 2020